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WILDLIFE DISEASE

Amphibian fungal panzootic causes
catastrophic and ongoing loss
of biodiversity
Ben C. Scheele1,2,3*, Frank Pasmans4, Lee F. Skerratt3, Lee Berger3, An Martel4,
Wouter Beukema4, Aldemar A. Acevedo5,6, Patricia A. Burrowes7, Tamilie Carvalho8,
Alessandro Catenazzi9, Ignacio De la Riva10, Matthew C. Fisher11, Sandra V. Flechas12,13,
Claire N. Foster1, Patricia Frías-Álvarez3, Trenton W. J. Garner14,15, Brian Gratwicke16,
Juan M. Guayasamin17,18,19, Mareike Hirschfeld20, Jonathan E. Kolby3,21,22,
Tiffany A. Kosch3,23, Enrique La Marca24, David B. Lindenmayer1,2, Karen R. Lips25,
Ana V. Longo26, Raúl Maneyro27, Cait A. McDonald28, Joseph Mendelson III29,30,
Pablo Palacios-Rodriguez12, Gabriela Parra-Olea31, Corinne L. Richards-Zawacki32,
Mark-Oliver Rödel20, Sean M. Rovito33, Claudio Soto-Azat34, Luís Felipe Toledo8,
Jamie Voyles35, Ché Weldon15, Steven M. Whitfield36,37, Mark Wilkinson38,
Kelly R. Zamudio28, Stefano Canessa4

Anthropogenic trade and development have broken down dispersal barriers, facilitating the
spread of diseases that threaten Earth’s biodiversity. We present a global, quantitative
assessment of the amphibian chytridiomycosis panzootic, one of the most impactful
examples of disease spread, and demonstrate its role in the decline of at least 501
amphibian species over the past half-century, including 90 presumed extinctions. The
effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans
in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only
12% of declined species show signs of recovery, whereas 39% are experiencing ongoing
decline. There is risk of further chytridiomycosis outbreaks in new areas. The
chytridiomycosis panzootic represents the greatest recorded loss of biodiversity
attributable to a disease.

H
ighly virulent wildlife diseases are con-
tributing to Earth’s sixth mass extinction
(1). One of these is chytridiomycosis, which
has causedmass amphibian die-offsworld-
wide (2, 3). Chytridiomycosis is caused by

two fungal species,Batrachochytriumdendrobatidis
[discovered in 1998, (4)] and B. salamandrivorans
[discovered in 2013, (5)]. Both Batrachochytrium
species likely originated in Asia, and their recent
spread has been facilitated by humans (5, 6).
Twenty years after the discovery of chytridio-
mycosis, substantial research has yielded insights
about its epidemiology (2, 3, 7, 8), yet major
knowledge gaps remain. First, the global extent
of species declines associated with chytridio-
mycosis is unknown [see (2, 9) for initial assess-
ments]. Second, although some regional declines
are well studied, global spatial and temporal pat-
terns of chytridiomycosis impacts remain poorly
quantified. Third, ecological and life history traits
have been examined only for a portion of declined

species (10, 11). Finally, after initial declines, it is
unknown what proportion of declined species
exhibit recovery, stabilize at lower abundance, or
continue to decline. Here we present a global
epidemiological analysis of the spatial and tem-
poral extent of amphibian biodiversity loss caused
by chytridiomycosis.
We conducted a comprehensive examination

of evidence from multiple sources, including the
International Union for Conservation of Nature
(IUCN) Red List of Threatened Species (12), peer-
reviewed literature, and consultation with am-
phibian experts worldwide (data S1).We classified
declined species into five decline-severity catego-
ries corresponding to reductions in abundance.
Species declines were attributed to chytridio-
mycosis on the basis of diagnosis of infection
causing mortalities in the wild or, if this was
unavailable, evidence consistent with key epide-
miological characteristics of this disease. Most
evidence is retrospective because many species

declined before the discovery of chytridiomyco-
sis (data S1).
We conservatively report that chytridiomycosis

has contributed to the decline of at least 501 am-
phibian species (6.5% of described amphibian
species; Figs. 1 and 2). This represents the greatest
documented loss of biodiversity attributable to a
pathogen and places B. dendrobatidis among the
most destructive invasive species, comparable to
rodents (threatening 420 species) and cats (Felis
catus) (threatening 430 species) (13). Losses
associated with chytridiomycosis are orders
ofmagnitude greater than for other high-profile
wildlife pathogens, such as white-nose syndrome
(Pseudogymnoascus destructans) in bats (six
species) (14) orWest Nile virus (Flavivirus sp.) in
birds (23 species) (15). Of the 501 declined am-
phibian species, 90 (18%) are confirmed or pre-
sumed extinct in the wild, with a further 124
(25%) experiencing a >90% reduction in abun-
dance (Figs. 1 and 2). The declines of all species
except one (Salamandra salamandra affected
by B. salamandrivorans) were attributed to
B. dendrobatidis.
Declines were proportional to taxonomic

abundance, with anurans having 93% of severe
declines (they comprise 89% of all amphibian
species). Within anurans, there has beenmarked
taxonomic clustering of declines, with 45% of
severe declines and extinctions occurring in the
Neotropical genera Atelopus, Craugastor, and
Telmatobius (Fig. 2) (16). Chytridiomycosis is
lethal to caecilians (17), but there have been no
caeciliandeclines due to the disease, althoughdata
are limited. The capacity for B. dendrobatidis
to causemajor declines is attributable to its main-
tenance of high pathogenicity (2, 18), broad host
range (8), high transmission rate within and
among host species (2, 7), and persistence in re-
servoir host species and the environment (19).
For many species, chytridiomycosis is the princi-
pal driver of decline, exemplified by precipitous
mass mortalities in undisturbed environments
(2). In other species, chytridiomycosis acts in
concert with habitat loss, altered climatic con-
ditions, and invasive species to exacerbate species
declines (20).
Most amphibian declines have occurred in the

tropics of Australia, Mesoamerica, and South
America (Fig. 1), supporting the hypothesis that
B. dendrobatidis spread from Asia into the New
World (6). Asia, Africa, Europe, andNorthAmerica
have had notably low numbers of declines at-
tributable to chytridiomycosis, despite widespread
occurrence ofB. dendrobatidis (8). Relative lack of
documented declines could reflect less knowledge
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of amphibian populations in Asia and Africa
(3, 21), early introduction and potential coevolu-
tion of amphibians and B. dendrobatidis in parts
of Africa and the Americas [e.g., (22)], the com-
paratively recent emergence of B. dendrobatidis
in Western and Northeast Africa (6), or unsuit-
able conditions for chytridiomycosis. It remains
unknown whether chytridiomycosis contributed
to widespread amphibian declines reported in
North America and Europe in the 1950s to 1960s
(3, 21, 22) or current enigmatic salamander de-
clines in eastern North America. Although the
number of new declines has now eased (Fig. 3),
additional declines could occur ifB. dendrobatidis
or B. salamandrivorans are introduced into new

areas, highly virulent lineages are introduced into
areas that currently have less-virulent lineages (6),
and/or environmental changes alter previously
stable pathogen-host dynamics (3).
Chytridiomycosis-associated declines peaked

globally in the 1980s, between one and two de-
cades before the discovery of the disease (Fig. 3
and table S1), and coincident with anecdotal rec-
ognition of amphibian declines in the 1990s (23).
A second, smaller peak occurred in the early
2000s, associated with an increase in declines in
western South America (Fig. 3 and fig. S1). Re-
gionally, temporal patterns of decline are variable
(fig. S1). For example, in some areas of South
America and Australia, declines commenced in

the late 1970s (2, 24), whereas in other areas, de-
clines started in the 2000s (25). B. dendrobatidis
is associated with ongoing declines in 197 as-
sessed species. Ongoing declines after a transi-
tion to enzootic disease dynamics (19) might be
driven by a lack of effective host defenses, main-
tenance of high pathogenicity (18), and presence
ofB. dendrobatidis in amphibian and nonamphib-
ian reservoirs (7, 19).
We examined host life history traits and en-

vironmental conditions to understand why some
species declinedmore severely than others, using
multinomial logistic regression and accounting
for the degree of evidence that chytridiomycosis
was implicated in each species’s decline (fig. S2
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Fig. 1. Global distribution of chytridiomycosis-associated amphibian
species declines. Bar plots indicate the number (N) of declined species,
grouped by continental area and classified by decline severity. Brazilian
species are plotted separately from all other South American species
(South America W); Mesoamerica includes Central America, Mexico, and
the Caribbean Islands; and Oceania includes Australia and New Zealand.

No declines have been reported in Asia. n, total number of declines by
region. [Photo credits (clockwise from top left): Anaxyrus boreas, C.
Brown, U.S. Geological Survey; Atelopus varius, B.G.; Salamandra salaman-
dra, D. Descouens, Wikimedia Commons; Telmatobius sanborni, I.D.l.R;
Cycloramphus boraceiensis, L.F.T.; Cardioglossa melanogaster, M.H.; and
Pseudophryne corroboree, C. Doughty]
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and table S2). Decline severity was greatest for
larger-bodied species, those occurring in consist-
ently wet regions, and those strongly associated
with perennial aquatic habitats. These patterns
are likely due to favorable environmental con-
ditions for B. dendrobatidis in wet regions (7),
because the fungus dies when desiccated, as well
as the general pattern of increased time to ma-
turity in large-bodied amphibians resulting in

less reproductive potential to offset mortality
due to chytridiomycosis (26). Declines were less
severe for species with large geographic and
elevational ranges (Fig. 4), potentially owing to
the greater chance of their range encompass-
ing environmental conditions unfavorable for
B. dendrobatidis (3) and/or information bias,
because population extinctions can be assessed
withmore certainty in restricted-range species.

Our results are consistent with previous studies
that show that the risk of chytridiomycosis is as-
sociatedwith host aquatic habitat use, large body
size, and narrow elevational range (10, 11).
Encouragingly, of the 292 surviving species for

which population trends are known, 60 (20%)
have shown initial signs of recovery. However,
recoveries generally represent small increases
in abundance of individual populations, not
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complete recovery at the species level. Logistic
regression showed the probability of recovery
was lower for species that experienced more re-
cent or more severe declines, for large-bodied or
nocturnal species, and for species occurring at
higher elevations (fig. S2 and table S3). When
holding those predictors of recovery at their
mean value, the chance of a species recovering
from a severe (>90%) decline was less than 1 in
10. Low probability of recovery for high-elevation
species might be related to suitable climatic con-
ditions for fungal persistence as well as limited
connectivity to source populations and/or longer
host generation time (26). Some recoveries may
be underpinned by selection for increased host
resistance (18), whereas management of concur-
rent threats may have facilitated other recoveries
(a promising avenue for conservation interven-

tions) (27). Unfortunately, the remaining 232
species have shown no signs of recovery.
The unprecedented lethality of a single dis-

ease affecting an entire vertebrate class high-
lights the threat from the spread of pathogens
in a globalized world. Global trade has recreated
a functional Pangaea for infectious diseases in
wildlife, with far-reaching impacts on biodi-
versity (this study), livestock (28), and human
health (29). Effective biosecurity and an im-
mediate reduction in wildlife trade are urgently
needed to reduce the risk of pathogen spread.
As mitigation of chytridiomycosis in nature
remains unproven (30), new research and
intensive monitoring that utilizes emerging
technologies are needed to identify mechanisms
of species recovery and develop new mitigation
actions for declining species.
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Fig. 3. Timing of chytridiomycosis-associated amphibian declines. (A) Declines by year.
Bars indicate the number of declines in a given year, stacked by decline severity. For species for
which the exact year of decline is uncertain, the figure shows the middle year of the interval of
uncertainty, as stated by experts or inferred from available data. (B) Cumulative declines. Curves
indicate the cumulative number of declines in each decline-severity category over time. In (A)
and (B), the arrows mark the discovery of chytridiomycosis in 1998.
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Fig. 4. Severity of chytridiomycosis-associated amphibian declines in relation to the
geographic and elevational ranges of species. (A) Declines in relation to geographic range.
Each dot indicates a species, located randomly along the perimeter of a circle with radius equal to
the log10 of the species’s geographic range in kilometers squared. (B) Declines in relation to
elevational range. Horizontal bars, boxes, and vertical bars indicate, respectively, mean, first and
second quartiles, and 95% quantiles of elevation ranges within each category of decline severity.
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RNA SEQUENCING

Slide-seq: A scalable technology
for measuring genome-wide
expression at high spatial resolution
Samuel G. Rodriques1,2,3*, Robert R. Stickels3,4,5*, Aleksandrina Goeva3,
Carly A. Martin3, Evan Murray3, Charles R. Vanderburg3, Joshua Welch3,
Linlin M. Chen3, Fei Chen3†‡, Evan Z. Macosko3,6†‡

Spatial positions of cells in tissues strongly influence function, yet a high-throughput, genome-
wide readout of gene expression with cellular resolution is lacking.We developed Slide-seq, a
method for transferring RNA from tissue sections onto a surface covered in DNA-barcoded
beads with known positions, allowing the locations of the RNA to be inferred by sequencing.
Using Slide-seq,we localized cell types identified by single-cell RNA sequencing datasets within
the cerebellum and hippocampus, characterized spatial gene expression patterns in the
Purkinje layer of mouse cerebellum, and defined the temporal evolution of cell type–specific
responses in a mouse model of traumatic brain injury.These studies highlight how Slide-seq
provides a scalable method for obtaining spatially resolved gene expression data at resolutions
comparable to the sizes of individual cells.

T
he functions of complex tissues are funda-
mentally tied to the organization of their
resident cell types. Multiplexed in situ hy-
bridizationandsequencing-basedapproaches
canmeasure gene expressionwith subcellular

spatial resolution (1–3) but require specialized
knowledge and equipment, as well as the upfront
selection of gene sets for measurement. By con-
trast, technologies for spatially encoded RNA se-
quencing with barcoded oligonucleotide capture
arrays are limited to resolutions in hundreds of
micrometers (4), which are insufficient to detect
important tissue features.
To develop our Slide-seq technology for high-

resolution genome-wide expression analysis, we
first packed uniquelyDNA-barcoded 10-mmmicro-

particles (“beads”)—similar to those used in the
Drop-seq approach for single-cell RNA sequenc-
ing (scRNA-seq) (5)—onto a rubber-coated glass
coverslip to form amonolayer we termed a “puck”
(fig. S1). We found that each bead’s distinct bar-
code sequence could be determined via SOLiD
(sequencing by oligonucleotide ligation and de-
tection) chemistry (Fig. 1A and fig. S1) (6–8). We
next developed a protocol wherein 10-mm fresh-
frozen tissue sections were transferred onto the
dried bead surface via cryosectioning (7). mRNA
released from the tissue was captured onto the
beads for preparation of 3′-end, barcoded RNA-
seq libraries (5) (Fig. 1B). Clustering of individual
bead profiles from a coronal section of mouse
hippocampus (7) yielded assignments reflecting
known positions of cell types in the tissue (Fig.
1C). Very fine spatial features were resolved, in-
cluding the single-cell ependymal cell layer be-
tween the central ventricle and the habenula in
the mouse brain (Fig. 1C, inset). Moreover, Slide-
seq could be applied to a range of tissues, in-
cluding the cerebellum and olfactory bulb, where
layered tissue architectures were immediately
detectable (Fig. 1D and fig. S2), as well as the
liver and kidney, where the identified clusters
revealed hepatocyte zonation patterns (9) and
the cellular constituents of the nephron, respec-

tively. Slide-seq on postmortem human cerebel-
lum was also successful in capturing the same
architectural features observed in the cognate
mouse tissue (fig. S3). Expression measurements
by Slide-seq agreed with those from bulkmRNA-
seq and scRNA-seq, and averagemRNA transcript
capture per cell was consistent across tissues
and experiments (fig. S4). Finally, we found no
detectable difference in the dimensions of brain
structures analyzed by Slide-seq and fluorescence
in situ hybridization (fig. S5), implying that
mRNA is transferred from the tissue to the beads
with minimal lateral diffusion.
To map scRNA-seq cell types onto Slide-seq

data, we developed a computational approach
called non-negative matrix factorization regres-
sion (NMFreg) that reconstructs expression of
each Slide-seq bead as a weighted combination
of cell type signatures defined by scRNA-seq
(Fig. 2A). Application of NMFreg to a coronal
mouse cerebellar puck recapitulated the spa-
tial distributions of classical neuronal and non-
neuronal cell types (10), such as granule cells,
Golgi interneurons, unipolar brush cells, Purkinje
cells, and oligodendrocytes (Fig. 2B and fig. S6A).
Themapping byNMFregwas found to be reliable
across a range of factor numbers and random
restarts (fig. S6, B and C). We found that 65.8 ±
1.4% of beads could bematched with a single cell
type (7), whereas 32.6 ± 1.2% showedmRNA from
two cell types (mean ± SD,N = 7 cerebellar pucks)
(Fig. 2C and fig. S7). The high spatial resolution
of Slide-seqwas key tomapping cell types:When
data were aggregated into larger feature sizes,
cell types in heterogeneous regions of tissue
could not be resolved (fig. S8). Slide-seq collects a
two-dimensional (2D) spatial sample of 3D tissue
volumes, and thus caution should be takenwhen
making absolute countingmeasurements through-
out the 3D volume in the absence of proper
stereological controls and samplingmethods (11).
We first sequenced pucks capturing 66 sagittal

tissue sections from a single dorsal mouse hippo-
campus, covering a volume of 9 mm3, with ~10-mm
resolution in the dorsal-ventral and anterior-
posterior axes and ~20-mm resolution (alternate
10-mm sections) in the medial-lateral axis (fig. S9,
A to D). 1.5 million beads, of which 770,000 could
be associated with a single scRNA-seq–defined
cell type using NMFreg, weremapped to short-read
sequencing data in the volume. We computation-
ally co-registered pucks along the medial-lateral
axis, allowing for visualization of the cell types
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