Response to Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”

Ben C. Scheele1,2,3*, Frank Pasmans4, Lee F. Skerratt2, Lee Berger3, An Martel4, Wouter Beukema4, Aldemar A. Acevedo5,6, Patricia A. Burrowes7, Tamiel Carvalho6, Alessandro Catenazzi9, Ignacio De la Riva10, Matthew C. Fisher11, Sandra V. Flechas12,13, Claire N. Foster1, Patricia Frías-Álvarez1, Trenton W. J. Garner14,15, Brian Gratwicke16, Juan M. Guayasamin17,18,19, Mareike Hirschfeld20, Jonathan E. Kolby3,21,22, Tiffany A. Kosch3,23, Enrique La Marca24, David B. Lindenmayer1,13, Karen R. Lips25, Ana V. Longo26, Raúl Maneyro27, Cait A. McDonald28, Joseph Mendelson III29,30, Pablo Palacios-Rodriguez21, Gabriela Parra-Olea31, Corinne L. Richards-Zawacki22, Mark-Oliver Rödel20, Sean M. Rovito23, Claudio Soto-Azat24, Luís Felipe Toledo8, Jamie Voyles35, Ché Weldon15, Steven M. Whitfield36,37, Mark Wilkinson38, Kelly R. Zamudio28, Stefano Canessa4

1Fenner School of Environment and Society, Australian National University, Canberra, ACT 2601, Australia. 2National Environmental Science Program, Threatened Species Recovery Hub, Canberra, ACT 2601, Australia. 3One Health Research Group, Melbourne Veterinary School, University of Melbourne, Werribee, VIC 3030, Australia. 4Wildlife Health Ghent, Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium. 5Programa de Doctorado en Ciencias Biológicas, Laboratorio de Biología Evolutiva, Pontificia Universidad Católica de Chile, Santiago, Chile. 6Grupo de Investigación en Ecología y Biogeografía, Universidad de Pamplona, Barrio El Buque, Pamplona, Colombia. 7Department of Biology, University of Puerto Rico, San Juan, Puerto Rico. 8Laboratorio de Historia Natural de Anfibios Brasilieros, Departamento de Biología Animal, Instituto de Biología, Universidad Estudal de Campinas, Campinas, Brazil. 9Department of Biological Sciences, Florida International University, Miami, FL 33199, USA. 10Museo Nacional de Ciencias Naturales-CSIC, Madrid 28006, Spain. 11MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK. 12Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia. 13Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Sede Venado de Oro, Bogotá, Colombia. 14Institute of Zoology, Zoological Society London, Regents Park, London NW1 4RY, UK. 15Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa. 16Smithsonian National Zoological Park and Conservation Biology Institute, Washington, DC 20008, USA. 17Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Investigaciones Biológicas y Ambientales BIOSFERA, Laboratorio de Biología Evolutiva, Campus Cumbayá, Quito, Ecuador. 18Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Ingeniería en Biodiversidad y Cambio Climático, Facultad de Medio Ambiente, Universidad Tecnológica Indoamérica, Calle Machala y Sabanilla, Quito, Ecuador. 19Department of Biology, Colorado State University, Fort Collins, CO 80523, USA. 20Museo para Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin 10115, Germany. 21Honduras Amphibian Rescue and Conservation Center, Lancellula Botanical Garden and Research Center, Tela, Honduras. 22The Conservation Agency, Jamestown, RI 02835, USA. 23AL Rae Centre for Genetics and Breeding, Massey University, Palmerston North 4442, New Zealand. 24School of Geography, Faculty of Forestry Engineering and Environmental Sciences, University of Los Andes, Merida, Venezuela. 25Department of Biology, University of Maryland, College Park, MD 20742, USA. 26Department of Biology, University of Florida, Gainesville, FL 32611, USA. 27Laboratorio de Sistemática e Historia Natural de Vertebrados, Facultad de Ciencias, Universidad de la República, CP 11400 Montevideo, Uruguay. 28Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA. 29Zoo Atlanta, Atlanta, GA 30315, USA. 30School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA. 31Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico. 32Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA. 33Unidad de Genómica Avanzada (Langebio), Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb), Ingéniería en Biodiversidad y Cambio Climático, Facultad de Medio Ambiente, Universidad Tecnológica Indoamérica, Calle Machala y Sabanilla, Quito, Ecuador. 34Department of Biology, Colorado State University, Fort Collins, CO 80523, USA. 35School for Earth, Environment, and Society, Florida International University, Miami, FL 33199, USA. 36Department of Life Sciences, Australian National University, Canberra, ACT 2601, Australia. 37School of Earth Sciences, Natural History Museum, London SW7 5BD, UK.

*LCorresponding author. Email: ben.scheele@anu.edu.au

Lambert et al. question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reafirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species.

In Scheele et al. (1), we quantified the impact of chytridiomycosis—a disease first described in 1998—on the world’s amphibians. Our contribution builds on previous work that inextricably links chytridiomycosis and global amphibian declines (2) and is underpinned by extensive research on two fungal species that cause chytridiomycosis, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). Our assessment concluded that the disease has con-
tributed to the decline of at least 501 species, including 90 presumed extinctions. Our estimate is likely conservative, as the disease has caused declines in undescribed species (3). Lambert et al. (4) challenge our methodology, focusing on the evidence we used to assign “strength of evidence scores” that implicate chytridiomycosis in declines.

Lambert et al. claim that our strength of evidence scores were not adequately justified, and reassigned species from higher scores to the lowest score of “expert opinion of the assessor only” (1). The fundamental difference between our approach and that of Lambert et al. is that we incorporated expert knowledge of amphibian species and integrated a comprehensive epidemiological framework to evaluate all available evidence. In contrast, the Lambert et al. approach lacked species expertise, applied a limited evidence framework, and used only easily accessible sources. They claim that their approach is more replicable and hence more rigorous. However, on the contrary, their exclusion of expertise, evidence, and data is neither comprehensive, nor is it best practice. For example, using a less comprehensive assessment led Lambert et al. to question some of the most well-documented chytridiomycosis-driven declines [e.g., Bsal-driven salamander collapses in northern Europe and Atelopus chiquitensis declines in Mesoamerica (5, 6)]. Thus, adopting a restricted approach may seriously limit understanding of disease impacts and hamper conservation efforts in the face of the current mass extinction crisis (7).

The narrow approach adopted by Lambert et al. ignores information we provided justifying species categorization as either “single line of correlative evidence” or “multiple lines of correlative evidence.” Lambert et al. assumed the data provided in columns J to M of data S1 (1) to be the only information justifying the assigned strength of evidence scores, and hence misrepresent our methodology. However, we used multiple lines of evidence that were not all captured in these four columns [supplementary materials of (1)]. We included columns J to M to show what published reports were available for these common and easy-to-categorize lines of evidence. However, our strength of evidence scores were informed by integrating evidence from 454 cited references, which was supplemented in some cases with expert judgment (see below). This holistic assessment, considering all available evidence, was only possible by drawing together information regarding specific species and locations, amphibian biology, disease ecology, epidemiology, and pathology.

Lambert et al. critique our use of expert opinion. Expert judgment is commonly used in many scientific fields and is necessary to critically evaluate multiple lines of evidence. Following best practices in expert elicitation (8), we assembled a large, diverse, and global group that combined disease and amphibian expertise with a first-hand understanding of the broader amphibian conservation challenges in the assessed countries. Furthermore, our assessments were accomplished via iterative group processes, using well-defined, structured, quantitative questions, with assessments cross-checked by the group of experts (8). For transparency, and to help readers understand our methodology, we included eight “worked examples” in our original paper [see data S1 (1)], but these were overlooked by Lambert et al. Thus, our study provides the best-vetted and comprehensive dataset on amphibian declines at a global scale, and is underpinned by a substantial body of empirical research.

Lambert et al. make an unsubstantiated claim that our referencing is inaccurate. Our assessment included evidence of species declines that occurred before Bd was described but are now linked to chytridiomycosis [figure 3, A and B, in (1)]. The fact that many declines subsequently attributed to chytridiomycosis are described in publications predating the description of Bd, and that many of those publications tentatively suggested other drivers of decline, neither invalidates data contained in those sources nor contradicts more recent findings implicating chytridiomycosis. In fact, pre-Bd sources provide invaluable information regarding the spatio-temporal patterns and processes of species declines that are fundamental components of holistic epidemiological assessments (9). For example, research published in 1989 documented the decline of Australia’s iconic corroboree frogs (*Pseudophryne corroboree*) and noted that declines occurred during a drought (10). However, subsequent research has clearly demonstrated the role of chytridiomycosis in corroboree frog declines (11).

Lambert et al.’s critique raises several deeper issues for the study of infectious disease and conservation. Lambert et al. treat expert knowledge and retrospective evidence as unreliable (at best) and suspicious (at worst) sources of information. Used rigorously, such forms of evidence are fundamental epidemiological tools routinely applied to diagnose the role of pathogens in disease outbreaks (12), particularly for declines that occurred before a causative agent is identified, as with chytridiomycosis. More broadly, omitting evidence compromises the ability to achieve a global overview by biasing assessments to regions that have more resources, infrastructure, and funding for wildlife research. Heterogeneity of evidence is a common challenge in conservation (13, 14). Such challenges are amplified when integrating data at a global scale. For conservation information to be applicable to as many regions as possible, we need to rigorously consider all evidence available.

We are in an era of unprecedented biodiversity loss (7). The scientific community has a great responsibility to be both rigorous and holistic in providing data that are unbiased and inclusive of all the information available. Our re-
search demonstrates that chytridiomycosis has irrefutably devastated amphibians and remains a global threat. Our timely assessment documents the current state of knowledge, which researchers can augment as new information becomes available. Under the scenario of ongoing amphibian declines, the scientific community has five important tasks: (i) to describe and quantify threats to biodiversity, (ii) to help prevent further declines and extinctions due to chytridiomycosis, (iii) to facilitate the recovery of affected species, (iv) to build on the lessons learned from chytridiomycosis to prevent further wildlife panzootics, and (v) to document current species distributions and abundances (with appropriate metadata) to provide baseline data against which to assess the impacts of future emerging diseases (15). In accomplishing these goals, we can confront the global conservation challenge.

REFERENCES


19 June 2019; accepted 20 February 2020
Published online 20 March 2020
10.1126/science.aay2905

Published date: 20 March 2020 www.sciencemag.org
Response to Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”


Science 367 (6484), eaay2905.
DOI: 10.1126/science.aay2905