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Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn
influences host–parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it
underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed,
depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants
and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under
environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation
of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance
conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from
human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of
ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and
biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental
conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense
potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens,
in addition to improving the detection and management of emerging potential zoonoses.
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Introduction: the role of ecoimmunol-
ogy in conservation
Ecoimmunology is a rapidly expanding field that aims to
investigate the causes and consequences of variation in
immunity within an ecological and evolutionary framework
(Downs and Stewart, 2014; Schoenle et al., 2018). By bridging
the gap between disease ecology and traditional ecophysiol-
ogy, ecoimmunology melds the measurement of immunologi-
cal markers with disease dynamics at multiple scales and over
space and time to understand how environmental conditions
influence susceptibility to and prevalence of disease (Brock
et al., 2014). Broadly, the immune system serves as an
organism-level process that monitors environmental changes
and responds to threats to physiological homeostasis, such
as parasites, pathogens and cancer. As the climate changes,
the emergence and spread of new and existing parasites and
pathogens poses a significant risk not only to human life
and animal health, but also to the conservation of wildlife
(Altizer et al., 2013; Cohen et al., 2019a; Ryan et al.,
2019). Through the measurement and understanding of
immunological defences and processes, we can better predict
the impacts of emerging diseases and zoonoses.

As ecoimmunological tools continue to be validated and
refined for use in wildlife, there is considerable application
for conservation. Going beyond simply monitoring pathogens
in wildlife, we can use ecoimmunology to manage emerging
pathogens, monitor and predict disease susceptibility and
understand or better predict remediation success (Downs and
Stewart, 2014; Cramp and Franklin, 2018). For example,
traditional ecoimmunological tests, such as swelling response
to an antigen or measurements of antibodies, can be paired
with experimental manipulations and measurements of par-
asite load both in the field and the laboratory to understand
when immunological resistance is effective against parasites
(see Parasite invasions and immunity in Galapagos finches).
By measuring immunological and physiological markers in
wildlife, we can determine how they are associated with dis-
ease and/or different fitness outcomes or how the individual
physiological status can constrain the immune response (see
Biomarkers of health, stress, and disease status in frigatebirds)
and respond with the best conservation approaches to
improve wildlife health. Finally, ecoimmunology can meld
wildlife conservation approaches with advances in human
medicine to develop and effectively administer vaccines
for species of conservation concern (see Using immunol-
ogy to understand transmissible cancers in Tasmanian
devils).

An ecoimmunological perspective will become even more
important as we disentangle and respond to the effects of ever-
increasing anthropogenic stressors on host–pathogen interac-
tions and disease emergence. Immune function is often mod-
ulated by temperature and seasonality (Martin et al., 2008),
both of which are shifting with climate change. Increasingly
high and variable global temperatures are modifying sea-

sonal patterns of behaviour and physiology, which can create
mismatches between the environment and immune function
capacity, or carry-over effects of shifting early environments
on immune function development (see Impacts of a changing
climate on the development of amphibian immune defences).
Furthermore, determining the mechanistic link between the
microbiome, which has been shown to relate to many aspects
of host health (Levy et al., 2017; Trevelline et al., 2019),
and immune function will help elucidate the causes and con-
sequences of changing environmental conditions on disease
dynamics (see Lessons from cricket symbionts and pathogens:
connecting microbes to the role of ecoimmunology in con-
servation biology). Additionally, understanding the role of
nutritional condition and feeding supplementation on para-
site infections can improve and expand remediation responses
(see Nutritional status and immunity), particularly as the
spread of urban environments can increase non-natural food
resources and lead to behavioural challenges for wildlife.
Finally, uncovering unique aspects of the bat immune system
can help us understand what makes these animals susceptible
to a devastating fungal disease, white nose syndrome, yet
simultaneously makes them important vectors of viruses that
can infect humans (see Ecoimmunology and disease ecology
in bats).

In this perspective piece, we provide case studies across
various taxonomic groups that demonstrate the depth and
breadth of current and future work at the intersection of
ecoimmunology and applied conservation biology in a chang-
ing world. Then, we discuss what we feel are the most
important ‘big questions’ facing the field of ecoimmunology,
from how to better integrate the study of immunity and other
biological and physiological functions, to understanding how
individual differences in immunity scale up to population-
level effects. For each of these questions, we discuss the future
of the field and the steps we can take to tackle them.

Applied ecoimmunology in conserva-
tion: case studies
Parasite invasions and immunity in
Galapagos finches
Birds in the Galapagos Islands have faced many novel
challenges, including introduced parasites and pathogens,
during the Anthropocene (Wikelski et al., 2004). For example,
Darwin’s finches are currently dealing with an onslaught of
invasive parasites, such as avian poxvirus (Kleindorfer and
Dudaniec, 2006; Parker et al., 2011) and avian vampire flies
(Philornis downsi) (Kleindorfer and Dudaniec, 2016; McNew
and Clayton, 2018). These parasites can cause significant
mortality (up to 100%) in Darwin’s finches, at least in part
because finches are naïve to these novel parasites (Koop et al.,
2013; O’Connor et al., 2014).
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Exploring the role of ecoimmunology in these host-
invasive parasite interactions has improved our understand-
ing of how Darwin’s finches are able to deal with new
challenges. For example, avian poxvirus prevalence in small
ground finches (Geospiza fuliginosa) has been shown to
increase with island size, which coincides with an increase
in the antibody response (to an immune-stimulatory protein,
keyhole limpet haemocyanin) and a decrease in the cell-
mediated immune response [phytohaemagglutinin (PHA) skin
test; Lindström et al., 2004]. Darwin’s finches also produce
parasite-binding IgY antibodies to the invasive vampire
flies (Huber et al., 2010). Adult flies are non-parasitic but
they lay their eggs in the nests of the birds (McNew and
Clayton, 2018). Once the fly eggs hatch, the larval instars
feed on the blood and other fluids of the nestling and adult
brooding female birds. Small and medium ground finch
nestlings generally do not produce a detectable parasite-
binding IgY antibody response to the parasite (Koop et al.,
2013; Knutie et al., 2016). However, when researchers
experimentally manipulated parasite presence, they found
that parasitized female finches produced a higher antibody
response, compared to non-parasitized females (Koop et al.,
2013). Furthermore, higher antibody levels in parasitized
females correlated negatively with parasite abundance (Koop
et al., 2013). These results suggest that this acquired immune
response is not developed until juvenile finches leave their
nests and that effective parasite resistance could depend
significantly on the brooding mother.

These studies show that Darwin’s finches produce mea-
surable innate and adaptive immune responses to invasive
parasites. Darwin’s finches host other parasitic taxa, such as
lice and mites, with which they have longer-standing relation-
ships (reviewed in Bulgarella et al., 2017). Therefore, finches
could have evolved immune defences against their native
parasites, which also cross-react with the novel parasites.
Although finches produce many types of immune responses to
their parasites, studies have yet to experimentally demonstrate
whether and/or when immunological resistance is effective
against novel invasive parasites.

Darwin’s finches have also had to deal with habitat change
resulting from the rising human resident and tourist popula-
tion in the Galapagos (Salinas-de-León et al., 2020). Urban
finches can experience an increase in fitness compared to non-
urban finches (Harvey et al., 2021), which might be related to
increased food availability (De León et al., 2019) or changes
in behaviour (Gotanda, 2020) or the gut microbiota (Knutie
et al., 2019). This habitat change could improve finch
immunity to parasites by providing the necessary energetic
resources to invest in an immune response, as found in other
bird-parasite systems (Knutie, 2020). Preliminary evidence
suggests that urban finches have higher nesting success
than non-urban finches, which is likely related to their
improved resistance to avian vampire flies (Harvey et al.,
2021). However, human-altered habitats can have varying
effects on finch-parasite interactions. For example, Darwin’s

finches in agricultural areas can experience different pox
infection dynamics across years, compared to finches in non-
agricultural areas, which is likely related to changes in the
finches’ innate immune function (Zylberberg et al., 2013).
Although the effect of human activity on Darwin’s finches
has garnered more attention recently (De León et al., 2019;
Knutie et al., 2019; Gotanda, 2020), more studies are needed
to understand how humans are affecting immunological
resistance in finches against invasive parasites. Identifying
immunologically resistant and non-resistant populations of
finches could help determine where to focus management
efforts, as well as understand what environmental factors
promote the evolution of resistance in particular populations.

Biomarkers of health, stress and disease
status in frigatebirds
Viruses are a global conservation concern for avian popula-
tions because they are responsible for a variety of pathological
effects in birds (Thomas et al., 2007). The case of magnificent
frigatebirds (Fregata magnificens) breeding in French Guiana
represents one recent example of a conservation challenge
due to disease. The French Guiana population of magnificent
frigatebirds is one of the most important in South-America
because of its size and its position between the populations
of the Caribbean and Brazil. Outbreaks of a viral disease,
associated with an emergent alphaherpesvirus, have occurred
annually since 2005 and cause high mortality rates in chicks
(De Thoisy et al., 2009; Sebastiano et al., 2017a; Sebastiano
et al., 2017b). Bacterial cultures and microscopic evaluation
of skin samples and viral screening excluded the presence
of ectoparasites, avian poxvirus and avian influenza (De
Thoisy et al., 2009). However, laboratory screening enabled
the detection of the DNA of a novel alphaherpesvirus in body
crusts (De Thoisy et al., 2009) and a strong replication of
the virus in beak or cloacal swabs collected from chicks with
clinical signs of the disease (nodular proliferative skin lesions).
These results show that herpesvirus replication is involved in
the appearance of clinical signs in chicks (Sebastiano et al.,
2017b).

Sebastiano et al. (2017a, 2017b, 2018) found that visible
clinical signs of the disease are significantly associated
with higher concentrations of a blood-based marker of
inflammation (the acute-phase protein haptoglobin) and of a
blood-based marker of lipid oxidative damage as compared
to healthy chicks. Both markers were also associated with the
short-term survival probability of chicks: birds with higher
haptoglobin or oxidative damage were those with the lowest
probabilities of survival (Sebastiano et al. 2017a, 2017b).
In addition, compared to chicks without clinical signs, those
showing severe clinical signs had higher blood concentrations
of both reduced and oxidized glutathione (intracellular
antioxidant) and higher haemagglutination and haemolysis
scores (indicating higher levels of natural antibodies)
(Sebastiano et al., 2018). Supplementation of resveratrol,
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which is a polyphenol with antioxidant and antiviral
properties, increased the concentration of haptoglobin in
plasma at an earlier phase of the disease, increased circulating
antioxidant defences in healthy chicks and reduced generation
of lipid oxidative damage in sick chicks (Sebastiano et al.,
2018). This suggests that resveratrol is rapidly metabolized in
sick chicks to control levels of lipid peroxidation (explaining
the lack of increase of circulating antioxidant defences)
(Sebastiano et al., 2018). Furthermore, resveratrol sustained
the production of nitric oxide and had negligible to no
influence on haemolysis and haemagglutination scores,
baseline corticosterone and activity of antioxidant enzymes
(Sebastiano et al., 2018). Overall, these studies showed
that chicks with visible clinical signs of the disease have
a pronounced alteration in particular components of their
immune and oxidative statuses in comparison with birds
without clinical signs. Moreover, these studies showed that
regulation of certain immunological mechanisms (including
inflammation) and of oxidative status are strictly intertwined
and contribute to elucidating the mechanisms underlying the
host-pathogen interaction. In conclusion, these studies suggest
that relying on physiological markers that do not require
complex laboratory analyses would enable (i) continuous
monitoring of the health status of a target population and (ii)
the rapid assessment of the efficiency of any intervention (e.g.
pharmacological treatment), because physiological markers
respond faster than other metrics, such as visible clinical
signs.

Using immunology to understand
transmissible cancers in Tasmanian devils
Transmissible cancers provide a unique opportunity to
probe immune evasion mechanisms used by cancer cells,
host-pathogen coevolution and immunological tolerance
to genetically mis-matched tissues in a natural ecological
setting. Tasmanian devils (Sarcophilus harrisii) are affected
by two independent transmissible cancers known as devil
facial tumours (Pearse and Swift, 2006; Pye et al., 2016). The
first devil facial tumour (DFT1) was reported in 1996 and
has now spread across most of the devil’s geographic range,
reducing the devil population by 77% (Lazenby et al., 2018).
The second devil facial tumour (DFT2) was discovered in
2014 and thus far exists only in southern Tasmania (Pye et al.,
2016). Using an evolutionary framework and drawing on
techniques from studies of human oncology, there has been
a considerable effort not only to understand the drivers of
clinical disease in wild devils, but possible methods to control
these cancers via vaccination and/or immunotherapy.

Major histocompatibility complex class I (MHC-I) is a
major target of allograft rejection in humans and reduced
MHC-I expression is an immune evasion mechanism
employed by many human cancers (Yoshihama et al., 2016).
Thus, low genetic diversity in MHC-I and MHC-II alleles was
initially proposed as means of DFT1 cells avoiding allograft

immune responses; many devils do not have the expected
set of six classical MHC-I alleles and a subset of devils lack
functional copies of the Saha-UA alleles (Cheng et al., 2012).
However, skin graft experiments demonstrated that devils do
reject allograft skin but not autograft skin (Kreiss et al., 2011).
Likewise, mixed lymphocyte reactions yielded the strongest
responses when blood was obtained from geographically
separated devil subpopulations as opposed to weak responses
from devils in the same subpopulation that are more likely
to have similar MHC alleles (Kreiss et al., 2011). Functional
studies at the protein level have shown that DFT1 cells do not
constitutively express MHC-I on the cell surface (Siddle et al.,
2013). Interestingly, this epigenetic downregulation of MHC-
I is reversible upon treatment with interferon-gamma. DFT1
cells also have a hemizygous deletion of the B2M gene that
is needed for MHC-I expression, which is hypothesized to
be associated with reduced MHC-I expression on DFT1 cells
(Stammnitz et al., 2018). DFT2 cells discovered soon after the
emergence of DFT1 do express MHC-I, but the alleles that are
most highly expressed in vivo appear to be alleles that match
host classical MHC-I or are less polymorphic non-classical
MHC-I genes (Caldwell et al., 2018).

Experimental vaccines and immunotherapies based on
upregulation of MHC-I have confirmed that anti-DFT1
immunity can be induced (Tovar et al., 2017), but to date
they have not been able to prevent DFT1 infections. Natural
DFT1 regressions have also been observed in wild devils (Pye
et al., 2016; Margres et al., 2018). CRISPR/Cas9 was used
to completely knockout MHC-I from DFT1 cells, and this
cell line was used to show that MHC-I proteins are a major
serum antibody target in devils that had immunotherapy-
induced or natural DFT1 regressions (Pye et al., 2016;
Margres et al., 2018; Ong et al., 2021). Altogether these
results suggest that low MHC-I diversity and reduced MHC-
I expression are important for transmissible cancer cells, but
additional mechanisms are likely employed to evade immune
defences.

Immunotherapies targeting immune checkpoint proteins
have become a pillar of human oncology, and many of the
key immune checkpoint interactions and expression patterns
appear to be conserved in devils (Flies et al., 2016; Flies et
al., 2017; Flies et al., 2020a). Additionally, drugs for human
cancers that target receptor tyrosine kinases have yielded
promising in vitro results for DFT1 and DFT2 (Kosack et
al., 2019). However, these treatments have limited potential
to impact devil conservation due to the need to repeat-
edly trap and inject devils. Vaccines delivered in food baits
that can be distributed across the landscape have played a
key role in rabies control for more than 50 years (Mueller
et al., 2015). This approach is being explored for several
other wildlife diseases, including DFT1 and DFT2 (Cham-
bers et al., 2017; Rocke et al., 2017; Rocke et al., 2019;
Flies et al., 2020b). The ongoing ecological monitoring can
inform vaccine distribution strategies if an effective vaccine is
developed.
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Impacts of a changing climate on the
development of amphibian immune
defences
Infectious diseases have ravaged amphibian populations
worldwide, and chytridiomycosis has been the most devas-
tating to date (Scheele et al., 2019). The causal pathogens,
chytrid fungi Batrachochytrium dendrobatidis (Bd) and
Batrachochytrium salamandrivorans, have spread via the food
and pet trade worldwide (Berger et al., 1998; Martel et al.,
2013; O’Hanlon et al., 2018), and there is growing evidence
that environmental change is contributing to the frequency
and intensity of chytridiomycosis outbreaks. Environmental
temperature is a strong driver of infection dynamics in the
field (Sonn et al., 2017; Cohen et al., 2019b; Sonn et al.,
2019), and both the fungal pathogen and amphibian immune
function are thermally sensitive (Piotrowski et al., 2004;
Sonn et al., 2017; Sauer et al., 2018; Robak et al., 2019).
Interactions with Bd also impact host physiology in ways
that suggest synergistic effects between disease and other
stressors. For example, infection increases rates of evaporative
water loss through the skin and skin sloughing in adult
amphibians and lowers the maximum temperatures animals
can withstand (Ohmer et al., 2015; Greenspan et al., 2017;
Ohmer et al., 2017; Russo et al., 2018), increasing their risk
of thermal and hydric stress. Recent work comparing climate
anomalies with locations of declines indicates that a changing
climate has likely played a role in disease outbreaks and
species extinctions (Rohr and Raffel, 2010; Cohen et al.,
2019a), highlighting the potential for an increasing impact of
disease on amphibians under future climate scenarios.

As ectotherms, amphibians are vulnerable to a changing
climate, both in terms of rising/more variable temperatures
and shifts in water availability (Raffel et al., 2013; Altman
et al., 2016; Raffel et al., 2015). Amphibian larvae develop in
unpredictable environments and the stressors they encounter
at this life stage can impact the formation of immune
defences as adults (Kohli et al., 2019). As air temperatures
increase, alterations to the global water cycle are predicted to
result in more frequent droughts and reduced hydroperiods
(Milly et al., 2005; McMenamin et al., 2008). As ponds dry
(Walls et al., 2013), amphibians may respond plastically by
shortening their larval period to escape impending desiccation
(Richter-Boix et al., 2011; Edge et al., 2016). This can
result in trade-offs between larval and post-metamorphic
growth, immune function and body condition, which have
been shown to reduce fecundity and survival into adulthood
(Wilbur, 1987; Semlitsch et al., 1988; Berven, 1990; Kohli
et al., 2019).

We have increasing evidence that the developmental envi-
ronment can have lasting impacts on amphibian immune
function, demonstrating the importance of investigating the
impacts of environmental change and disease across multiple
life stages. In the wood frog (Rana sylvatica), Gervasi and
Foufopoulos (2008) found that there was an immunological

cost to increasing developmental rate in response to pond
drying. After metamorphosis, animals reared as larvae under
drying regimes had lower cell-mediated immune responses to
PHA and reduced leukocyte counts, demonstrating a poten-
tial trade-off between accelerating development and immune
function (Gervasi and Foufopoulos, 2008). Northern leopard
frogs (Rana pipiens) reared under pond drying also showed
dampened cell-mediated responses to PHA injection (Bran-
nelly et al., 2019). In addition, animals with shorter larval
periods had reduced total antibody production and lower
bacterial killing ability of whole blood after metamorphosis
(Brannelly et al., 2019). Finally, when exposed to Bd, frogs
that had experienced drying during development exhibited
lower survival (Ohmer et al., in prep.). Collectively, this work
provides evidence of the insidious effects of a changing climate
on amphibian susceptibility to pathogens and highlights the
importance of considering carry-over effects from sensitive
life stages when designing management plans for species at
risk of disease-related declines.

Lessons from symbionts and pathogens in
the cold: connecting microbes to the role of
eco-immunology in conservation biology
Environmental challenges and changes can directly impact
both immune function and the physiology of microbes, and
consequently the outcome of their interactions (Ferguson et
al., 2018a; Jin Song et al., 2019). Changes in symbiotic micro-
bial communities can thus impact host disease resistance
(Knutie et al., 2017a; Knutie, 2018; Knutie, 2020), disease
transmission (Weiss and Aksoy, 2011; Hegde et al., 2015),
networks of physiological activity connected to immunity
(Ferguson et al., 2018b) and the overall ability to thrive in
a changing environment (West et al., 2019). Conservation
biology would benefit from the ability to predict the outcomes
of these host–microbe interactions such that we can foresee
and mitigate changes in the dynamics of infection. Further,
we may use this understanding to effectively supplement hosts
with beneficial microbes (e.g. bioaugmentation) to boost host
resilience under challenging environments (Jin Song et al.,
2019). Thus, ecoimmunology will be increasingly effective in
conservation biology if it integrates an understanding of the
impact of environmental change on the microbes that support
and challenge their hosts.

To use ecoimmunology and host–microbe interactions to
predict host success under changing environments, we need
a mechanistic understanding of their connection (Trevelline
et al., 2019). For example, overwintering modifies the com-
munity of microbes in the gut of Gryllus veletis crickets,
notably reducing populations of Pseudomonas spp. Simul-
taneously, winter depresses various measures of immunity
in both G. veletis (Ferguson et al., 2018a) and a variety of
other insects (Ferguson and Sinclair, 2020). Because Pseu-
domonas spp. can be opportunistic pathogens, as well as
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ice nucleators (Olsen and Duman, 1997) it is possible that
the host prophylactically modifies the microbiome to reduce
the chance of infection or freezing damage during a period
of dormancy (Ferguson et al., 2018a). Alternatively, if low
temperatures or seasonal changes in the physiology of the
gut reduce the chance of opportunistic infections, this could
permit the host to down-regulate its investment in immunity
over the winter and shuttle resources to other physiology
such as cold tolerance (Ferguson et al., 2018a). The potential
impact of this concerted seasonal shift in immunity and the
microbiome on host success thus depends on how vulnerable
this connection will be to environmental change. Changing
winter conditions may lead to new shifts in the microbiome
that could impact immunosuppressed hosts. Alternatively,
shifts in immune activity could impact how the microbiome
is mediated seasonally. Thus, it is important to understand if
environmental cues trigger hosts to prophylactically modify
their microbiomes, if environmentally mediated changes in
the microbiome trigger hosts to modify their immune invest-
ment, and how tightly these host–microbe interactions will
be maintained under shifting environments. We suggest that
characterizing plasticity in microbiomes will create opportu-
nities to explore the connection to host health, as well as
the efficacy of conservation efforts that include microbial
supplementation.

Understanding host resilience and disease dynamics
through ecoimmunology will be most useful if we also
consider the physiology of the microbes that they encounter—
both their symbionts and their pathogens. For example, in the
same species of crickets (G. veletis), the outcome of infection
with the entomopathogenic fungus Metarhizium brunneum
changes depending on the thermal acclimation and thermal
performance of both the host and the pathogen (Ferguson and
Sinclair, 2020). Fluctuating temperatures appear to improve
immune function in the host; however, cold acclimation in the
fungus negates these benefits (Ferguson and Sinclair, 2020).
Thus, if we only understand changes in the host immune
system, we miss out on how these changes ultimately impact
the outcome of infection. Therefore, using ecoimmunology
to make predictions about host resilience and emerging
diseases will benefit from a physiological understanding
of the microbes that interact with the immune system. We
suggest that studies aiming to make these predictions should
consider that both hosts and pathogens/beneficial symbionts
to respond to environmental change.

Nutritional condition and immunity
The immune system evolved to defend against parasites,
and variation in immunological phenotypes can govern
population-level dynamics of both infectious disease and host
populations (Lochmiller, 1996; Hawley and Altizer, 2011;
Martin et al., 2016). Still, what the consequences of individual
variation for disease spread may remain an unanswered
question in disease ecology (Becker et al., 2019). Host
competence—an individual’s ability to perpetuate a parasite

(Paull et al., 2012)—is influenced by condition (Beldomenico
and Begon, 2010), including nutritional condition, which
provides the most direct and sensitive measure of resource
limitation for the organism’s functions (Parker et al., 2009;
Monteith et al., 2013; Monteith et al., 2014). Understanding
how nutritional condition mediates immune defences is
critical for understanding the population dynamics of species
and associated disease dynamics (Downs and Stewart, 2014).

Superficially, the relationship between nutritional condi-
tion and immune defences appears quite simple. Animals in
high nutritional condition should invest in immune defences
in a manner that optimally balances protection against par-
asites with immunopathology (Downs et al., 2014; Downs
and Stewart, 2014), and in general infection occurrence and
intensity is more severe in individuals in poor condition (Bel-
domenico and Begon, 2010). This pattern often holds when
nutritional condition is manipulated through food restriction
(e.g. French et al., 2007a; French et al., 2007b), and resource-
based reductions of immunity can be ameliorated by supple-
menting with the restricted resource (Ruiz et al., 2010; Ardia
et al., 2011; Knutie et al., 2017b; Knutie, 2020). In some situa-
tions, however, the pattern is more complicated. The structure
of immune defences of roe deer (Capreolus capreolus) changes
with physiological condition but whether an immune defence
increases or decreases differs among defences (Gilot-Fromont
et al., 2012), although nutritional condition as defined herein
was not measured. Similarly, antibody concentrations in Soay
sheep (Ovis aries) are positively, negatively and non-linearly
associated with body mass depending on the antibody type
measured (Nussey et al., 2014). North American elk (Cervus
elaphus) from a high-density population and adult elk have
lower nutritional condition and higher constitutive, antibac-
terial defences than those from low-density populations and
yearling elk, respectively (Downs et al., 2015). Thus, individ-
uals adjust their investment in immune strategies, depending
on their nutritional condition, but the pattern of investment is
situational. Understanding when and how this switch occurs
is critical for predicting the reproductive number, R0, for the
spread of a parasite through a population and the long-term
persistence of both the host and the parasite.

Interactions among nutritional condition, immune defences
and parasites are complex. The energy and nutrients ingested
by a host supports both the host’s immune system and
reproduction of parasites. Cressler et al. (2014) modelled
resource allocation between the host’s immune system and
parasites. When resources were allocated to the host’s immune
system first, parasite load peaked at low acquisition rates
and then declined with increasing acquisition rates. When
parasites were prioritized, parasite load increased with
increasing energy acquisition, and when hosts and parasites
competed over resources parasite load peaked at intermediate
resource acquisition (Cressler et al., 2014). Evidence for all
three models exists in the empirical literature (Cressler et
al., 2014), and differences in patterns of allocation to hosts
and parasites will complicate management and intervention
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plans for species of concern. As examples from species of low
conservation concern, laboratory mice (C57BL/6) maintained
outside in enclosures and experimentally infected with a
gastrointestinal nematode (Trichuris muris) had reduced rates
of weight gain per time spent foraging, suggesting either
acquisition of additional food might be prioritized to parasites
or greater energy expenditure to fight the infection (Budischak
et al., 2018). Additionally, female red deer (C. elaphus) did not
reduce investment in immunity during lactation, but did have
increased parasite intensity (Albery et al., 2020), suggesting
parasites might have increased access to resources during
lactation. Finally, mallards in better nutritional condition shed
more influenza virus (Arsnoe et al., 2011). For all of these
examples, resource supplementation might lead to increased
host competence and parasite spread. Thus, understanding
how resources are partitioned between hosts and parasites
becomes critical for developing management plans for species
of concern. When food availability and parasites are suspected
to be driving population declines, screening for parasite
infections (see Beechler et al., 2019 for an example of
screening) and quantifying immune responses to changes in
interventions will allow managers to develop better plans.

Ecoimmunology and disease ecology in bats
Chiroptera (bats) is the second largest mammalian group
after rodents, with more than 1400 species described to
date (Wilson and Mittermeier, 2019). They occupy almost
every habitat on all continents except Antarctica, show an
incredibly diverse ecology and provide humans with crucial
ecosystem services, such as fruit pollination, seed dispersal
(Ghanem and Voigt, 2012) and pest control (Maine and
Boyles, 2015). Recently, bats became the focus for human-
oriented approaches in infectious disease research as impor-
tant reservoirs for various emerging viruses.

Bats host the most zoonotic viruses, including Ebola,
rabies, Nipah and Hendra viruses (Olival et al., 2017)
and SARS-related coronaviruses (Jo et al., 2020), and in
most cases the infection causes little to no pathology.
The lack of clinical symptoms might be associated with
tolerance or resistance towards intracellular pathogens,
including viruses (Brook and Dobson, 2015; Goh et al.
2020; Guito et al. 2021). Indeed, some bats constitutively
express type I interferons with antiviral activities (Mandl et
al., 2018; Gorbunova et al., 2020), but not all (Streicker
and Gilbert, 2020). Moreover, to combat inflammation-
associated pathologies, some bat species demonstrate reduced
production of pro-inflammatory cytokines TNFα and IL-1β

via various mechanisms (Gorbunova et al., 2020), which
are associated with high anti-inflammatory cytokine IL-10
expression (Kacprzyk et al., 2017).

Besides their role as reservoirs, bats are susceptible to
extracellular pathogens such as bacteria and fungi (Mühldor-
fer, 2013; Brook and Dobson, 2015). One example is Pseu-
dogymnoascus destructans, the cold-loving fungal pathogen

causing the disease ‘white nose syndrome’. This disease has
been responsible for mass mortalities in cave-dwelling hiber-
nating North American bats with important conservation and
economic consequences (Hecht-Höger et al., 2020). Pseudo-
gymnoascus destructans originates from Europe and recent
studies indicate that North American bats exhibit a local and
systemic immune response towards the fungus (Johnson et
al., 2015, Field et al., 2015; Lilley et al., 2019; Hecht-Höger
et al., 2020), while European bats have evolved tolerance
mechanisms (Bandouchova et al., 2018; Lilley et al., 2019;
Hecht-Höger et al., 2020; Fritze et al., 2021).

Bats share the same distribution and often food resources
with humans, causing human–bat conflicts, which will prob-
ably increase in the future. The potential involvement of
bats in the current COVID-19 pandemic and other disease
outbreaks might lead to further persecutions and intentional
killing of bats by humans (Fenton et al., 2020). According to
the International Union for the Conservation of Nature, habi-
tat destruction, hunting, infectious disease and persecution
threaten vulnerable bat populations (Fenton et al., 2020). The
impact of these anthropogenic factors on bat conservation
differs in magnitude between species and is linked to their
ecology. Foliage-roosting Bornean bat species are particularly
sensitive to habitat destruction, showing reduced body condi-
tion and a decrease in immune cell numbers (Seltmann et al.,
2017), while man-made roosts negatively affect the adaptive
immunity of Tadarida brasiliensis (Allen et al., 2009). Chang-
ing resource availability (e.g. roosting sites, food sources)
increases the shedding of Henipaviruses (e.g. Hendra and
Nipah viruses) in fruit bats, which can not only increase viral
transmission between bats, but can also lead to spillover into
secondary and tertiary hosts (Plowright et al., 2008; reviewed
in Kessler et al., 2018). Besides biological pollution (see above
the case of P. destructans), bats are affected by chemical pol-
lutants, which are already causing immunosuppression at low
levels (Becker et al., 2017). The epidemiological consequence
of these negative effects is unknown.

Despite the methodological difficulties of working on bat
immunology (Schountz, 2014), there has been significant
progress in recent years, which will continue especially with
the continuous development of novel species-non-specific
assays and -omics technologies. A deeper knowledge of bat
immune mechanisms and factors influencing their immunity
is important not only to forecast reservoir species and prior-
itize surveillance targets (Becker et al., 2020b), but also for
conservation efforts to predict vulnerable species, to under-
stand the effects of sub-lethal threatening factors and their
epidemiological consequences.

Future directions: filling the gaps for
conservation success
Ecoimmunology offers conservation scientists and practition-
ers with the opportunity to expand our understanding of
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Figure 1: The conceptual link between ecoimmunology and conservation biology in understanding how hosts and pathogens will respond to
anthropogenic change. Ecoimmunology involves the measurement of host physiology, including their microbes. This in turn allows us to
‘identify’ biomarkers of disease and potential carriers of infection and ‘predict’ what causes changes in susceptibility and leads to disease in wild
populations. Finally, we can use these ecoimmunological tools to develop ‘mitigation’ strategies, which may involve, for example, population
monitoring, vaccine development and/or nutritional/microbial supplementation, habitat modification and/or culling and life-cycle interruption.

animal health to improve predictions and manage the impacts
of anthropogenic environmental change on individuals, pop-
ulations, species and communities. The utility of physiology
for conservation biology lies in its ability to derive testable
hypotheses by combining ecoimmunological approaches with
traditional ecological metrics (population monitoring, biodi-
versity assessments and animal growth and abundance), and
emerging or novel tools (next generation molecular tools, -
omics, biotelemetry, citizen science), to understand the impor-
tance of mechanisms (Carey, 2005; Cooke and O’Connor,
2010; Cooke et al., 2017; Madliger et al., 2020). While the
case studies presented in this paper speak to the diverse ways
in which ecoimmunological tools and approaches are being
used to inform and manage conservation efforts in a variety
of taxa, there remain key gaps in our understanding of how
immune functions respond to environmental change and how
we can use ecoimmunological tools to better manage issues of
conservation significance.

As a diverse group of ecoimmunologists with a range of
expertise and an understanding of conservation issues that
could benefit from ecoimmunological approaches, we have
developed a series of research questions that we hope may
guide future research to improve the utility of ecoimmunology
for conservation and biodiversity protection. While not an
exhaustive list, these questions span a range of topics from the
fundamental impacts of anthropogenic changes on immune
function, to the development of novel testing technologies,
to understanding how inter-individual variation in immune
responses shape population level responses to anthropogenic
change. Moreover, these questions are deliberately broad,
meaning that there are likely many sub-questions that can be
developed from each of these overarching questions. To arrive

at the 10 final questions, each author was independently
invited to propose 3–5 research priority questions that they
felt were important to direct future research in the field and
to better integrate ecoimmunological tools into traditional
conservation biology approaches (Figure 1). We collected 43
questions from the authorship and grouped these into broad
themes (Supplement 1). We then condensed the questions into
10 focal questions that captured the intent of the original pro-
posed questions. The final questions were then circulated to
the authorship for comment and approval. They are presented
below under the subheadings Identifying drivers of immune
phenotypes, Predicting outcomes and Mitigation.

identifying drivers of immune phenotypes
1. What roles do early-life stressors have on later-life health

and disease susceptibility in wildlife?
2. How does anthropogenic driven environmental change

[e.g. pollutants (noise, light, microplastics, chemical), land
use changes, abiotic factors, environmental instability]
affect the function and competency of the immune system?
How predictable are responses to environmental stressors
across individuals/populations/species/taxa?

3. How do we integrate ecoimmunology with other
disciplines, such as animal behaviour, endocrinology,
metabolism, genetics and species interactions (e.g. host-
microbiome, community dynamics) to create a more
holistic approach to conservation?

Predicting outcomes
4. What role do immune strategies (avoidance, tolerance,

resistance) have in determining disease risk? Can we pre-
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dict ‘at-risk’ populations/species/taxa from their immune
strategy?

5. How can advancing medical and analytical technologies
(e.g. high-throughput molecular technologies, ‘omics’,
health monitoring, etc.) improve the use/uptake of
ecoimmunological tools in conservation?

6. How do we more effectively link anthropogenic-mediated
changes in immune function to changes in disease
susceptibility and other fitness consequences? What traits
do we measure and how do we best measure them?

7. How do individual-level differences in immune defences
affect disease processes within/between populations? How
generalizable are patterns across populations?

8. What is the role of immunity in range expansion, biologi-
cal invasions or adaptation to human-influenced environ-
ments (e.g. urban, agricultural areas)?

Mitigation
9. How can we improve immunocompetence in threatened

species (e.g. vaccine development, immune ‘boosting’
agents)? Can we leverage investment in human vac-
cines to improve interventions/outcomes for threatened
species?

10. What ecoimmunological tools can be used in environ-
mental remediation approaches to address the realized
and potential disease problems caused by anthropogenic
change?

The immune system, like other physiological systems, is
exquisitely sensitive to the environment and as an organismal-
level process (Esser, 2016), can help us monitor and man-
age the impacts of environmental change in near real time
(Acevedo-Whitehouse and Duffus, 2009). Unlike traditional
ecological monitoring approaches, the effects of environmen-
tal change on immune systems can be swift (Hill-Cawthorne
and Sorrell, 2016) and can potentially be detected before
effects manifest at the population or ecosystem levels. Indeed,
the diversity of immunological responses to environmental
change means that ecoimmunologists are well positioned to
contribute to the prediction, management and recovery of
biodiversity loss resulting from anthropogenic environmental
change. However, a key issue for the development of ecoim-
munology as a conservation tool remains: what traits do we
measure? The dynamism of the immune system, combined
with its extensive interconnectivity with other physiological
and morphological systems and the high degree of inter-
individual variability, means that any immune parameter
measured in isolation likely has little value (French et al.,
2009; Heinrich et al., 2017).

Individuals, populations and species can have vastly dif-
ferent immune response strategies and pathogen exposure
histories (Becker et al., 2020a), immune strategies may also
change across life history stages (Lee, 2006; Rollins-Smith,
2017; Love et al., 2008) and host–pathogen relationships
may vary both spatially and temporally (Boëte et al., 2019,

Altizer et al., 2018), which in turn can influence resulting
immune responses. Moreover, the utility of some traditional
ecoimmunological metrics for predicting the outcome of a
pathogen exposure is largely unknown (Hawley and Altizer,
2011). Indeed, how metrics that are measured at the level of
the individual ‘scale-up’ to provide a picture of population-
or species-level disease responses, remains a critical gap in
our understanding. Increasingly, ecoimmunologists are taking
a multivariate approach that not only considers different
aspects of immune function, but also captures the inter-
individual, spatial and temporal variations in immune system
traits (Brock et al., 2013; Neuman-Lee et al., 2019; Becker
et al., 2020a). Moreover, integrating ecoimmunological met-
rics with physiological, behavioural and microbiome studies
could identify underlying relationships that may serve as
indices of immune function (Campbell et al., 2018; Neu-
man-Lee et al., 2019). This integration might be particularly
useful for rare/cryptic, threatened or small animals for which
traditional ecoimmunological tools (e.g. blood sampling) are
considered too invasive or impractical. Equally, they may
reveal trade-offs with immune function that may affect the
host’s capacity to respond to infections (Demas et al., 2012;
Brace et al., 2017). Emerging technologies that allow rapid,
cost-effective sequencing of immune gene expression and
advances in wearable ‘health monitoring’ devices will allow
unprecedented access to the immune systems of free-ranging
animals over both temporal and biological scales. Currently,
ecoimmunological data are heavily biassed towards birds and
certain mammals (e.g. rodents, ungulates), and comparative
data for other vertebrates and invertebrates is relatively scarce
(Cooke et al., 2020). Studying the diversity of immune strate-
gies should lead to better models for conserving animals
facing disease challenges.

The scale and rate of current environmental changes means
that many conventional wildlife management approaches are
likely to be unsuitable for managing future environmental
remediation and rewilding interventions (Cooke et al., 2020).
Although ecoimmunology is not routinely considered as a
wildlife management tool alongside traditional population
and ecological assessment approaches, it has much to offer
the field beyond simply monitoring pathogen and parasite
loads. For example, threatened species at risk of disease-
associated declines due to the loss of genetic diversity may
benefit from nutritional supplements (including supplemental
feeding, provision of key vitamins and minerals, antioxidants,
bioflavonoids) and vaccination programs (Strandin et al.,
2018; Newton et al., 2019). Likewise, health screening that
includes metrics of immunological fitness could improve the
outcome of translocation and reintroduction programs and
reduce the likelihood of disease emergence and spread (Ballou,
1993; Teixeira et al., 2007; Tarszisz et al., 2014). Investment in
wildlife health programs has the added benefit of potentially
reducing disease spread to humans and domestic animals.
In the face of the recent SARS-COV-2 virus outbreak, a
‘One-Health’ approach that incorporates ecoimmunological
approaches to monitor immune parameters and pathogen
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loads in wildlife at the growing human–wildlife interface will
allow us to better manage the emergence of novel zoonoses
(Watsa, 2020; Zinsstag et al., 2020). As the rate of emerging
diseases continues to grow in both the human population
and in wildlife (Jones et al., 2008), ecoimmunological tools
and approaches will be critical for predicting and managing
disease risks and pathogen spread.

To conclude, ecoimmunology offers a range of opportu-
nities to describe the effects of anthropogenic change on
wildlife, to better manage its impacts on ecosystems and to
identify solutions to the problems (Madliger et al., 2016).
In the case studies provided herein, we have demonstrated
the diverse ways that ecoimmunological tools are currently
addressing pressing conservation concerns. We have also iden-
tified key avenues for future research that will improve how
we can use ecoimmunological knowledge to better man-
age issues of conservation significance. As with conservation
physiology more broadly, the value of ecoimmunology as
a tool to remedy the biodiversity crisis will depend largely
on effective collaboration and communication with other
conservation practitioners, policy makers and the broader
community. Mixed or conflicting messaging can create a
discord between conservation requirements and public health
recommendations. For example, tick habitat and Lyme disease
transmission can be reduced via cut grass lawns (e.g. Cen-
ters for Disease Control and Prevention, https://www.cdc.gov/
lyme/prev/in_the_yard.html), but these lawns are ecologically
depauperate habitats for biodiversity (Smith et al., 2015).
Ecoimmunology can play an important role to both identify
these discords, and to help inform and create policy that
effectively meets the needs of both.
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